

Installation, Operation & Maintenance Manual

VIMS Series
Vertical In-Line Multistage Stainless Steel Pump

EXCLUSIVE SECURITY STICKERS

All pumps & motors have exclusive designed hologram security sticker with unique serial number certifying that the said products are original and genuine produced by Stellar Pump Australia.

To validate if product purchased is original & genuine, serial numbers are registered in "Authentic" page of Stellar Pump official website http://www.stellarpump.com.au Serial numbers can be found in metal nameplates & data information stickers.

If your serial numbers are not on the list, it means

- The list is not yet updated. (quarterly updating the Authentic page)
- It has been removed to accommodate newly registered serial numbers.
- The product(s) that you have received is counterfeit of unknown origin.

Original and genuine product data information & technical specifications can be provided within 48 hours to 72 hours upon receipt of requested email. Send your request along with serial number, complete name, company, business address, position & contact details to authenticity@stellarpump.com.au

On behalf of Stellar Pump Australia and authorized local distributor, we appreciate for doing business with us & we trust that you will enjoy using our genuine high performance & reliable products.

STELLAR PUMP AUSTRALIA

TABLE OF CONTENTS:

Section I: Introduction	Page 3
Section II: General Practice	Page 4
Section III: Warranty	Page 4
Section IV: Storage & Lifting	Page 4
Section V: Installation	Page 5
Section VI: Operation Procedure	Page 6
Section VII: Maintenance Procedure	Page 7
Section VIII: Spare Parts	Page 9
Section IX: Exploded View	Page 10
Section X: Trouble Shooting	Page 14

SECTION I: INTRODUCTION

STELLAR VIMS Series Vertical In-line multi-stage stainless steel centrifugal pumps are designed for extreme high in head. The said series is closed coupled type where motor shaft is connected to pump shaft ensuring proper alignment. Cost economical, space saving, high quality & wide series of applications in commercial establishments, industrial sectors, municipal & water districts, irrigations and air-conditioning systems.

This IOM Manual shall be read entirely prior for installation and operation. Stellar Pump shall not be liable for any injuries, damages & pertaining cost due to failure in observing the instructions and maintenance contained in this manual.

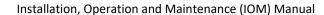
The following symbols indicated in this manual are needed to pay attention:

Extreme hazard which will result of severe injury or death

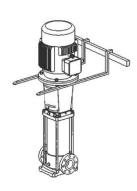
Hazard which could result of personal injury or severe damage to property

Hazard which could result of minor injury or damage to property

SECTION II. GENERAL PRACTICE


- 1. Do not operate the pump without proper procedure of priming (pump volute flooded with water).
- 2. Do not operate the pump if water has sand or any solid particles that could clog the impeller.
- 3. Maximum Lifting Speed shall be 3 meters per second.
- 4. Do not operate the pump beyond its limits and parameters.
- 5. Always shut down the power supply when performing maintenance checkup in electric motor terminal box.
- 6. Never operate the pump if power supply (voltages) are not within the normal ranges.
- 7. Never operate the pump without proper procedure of checking pump alignment. Excessive vibration could result of severe damage of pump and motor.
- 8. For negative suction (suction lift) installation, Net Positive Suction Head (NPSH) should be calculated against the depth of water source (Tank) to avoid cavitation.
- 9. Always wear personal protective equipment before performing installation, operation and maintenance of this pump.

SECTION III. WARRANTY CONDITION


- This warranty applies against all defective materials and/or faulty manufacture for the period of **One** (1) year from the date of shipment unless specifically stated otherwise.
- Pumps shall be used in accordance for only specific purpose and shall be operated within the designed limits & capabilities.
- Valid replacement of parts and components shall be shipped direct to client free of charge. However, labor cost for replacement of parts, disassembly and assembly of pumps is not included.
- This warranty shall be null and void if other parties have tampered, adjusted and/or repaired the pump.
- For genuine spare parts, kindly refer to authorize distributor or agent of Stellar Pump in your local area.

SECTION IV. STORAGE & LIFTING

- Storage room or warehouse should be clean, free from any dust particles that could enter to sensitive rotating parts of the pump & motor.
- Pump shaft should be rotated 15 to 20 revolutions periodically.
- Protect against corrosion by painting corrosive resistant coating of some unpainted surfaces of the pump.
- Lubricant shall be applied to bearings for long term storage.
- When lifting the VIMS Series, figures 1 & 2 are highly recommended:

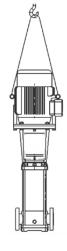


Figure 1: 0.37 - 7.5 KW

Figure 2: 11 - 75KW

SECTION V. INSTALLATION

1. Pump Room or Storage

- a. Pump room or storage should be clean, free from any construction activities, materials & debris.
- b. Pump room or storage should be ventilated with proper lighting, safety / warning signage & secured with steel door and lock.
- c. Pump room or storage should be provided for provision of crane or chain block for installation & maintenance purposes.
- d. Pump room or storage should be protected against flooding.

2. Mounting

- a. Pumps can be mounted in fabricated steel base plate or concrete base or plinth as long as surface is properly level.
- b. Pump can be installed with rubber isolation, spring isolation or inertia base to avoid transfer of vibration during operation. Kindly refer to manufacturer for appropriate sizes and types.
- c. Pumps should be properly mounted with bolts tighten evenly.

3. Alignment

a. All pumps ship to country of destination are factory aligned.

b. Misalignment during transportation, improper handling and installation could occur. Henceforth, inspection of alignment using mechanical dial indicator or laser alignment instrument is mandatory prior for start-up.

4. Piping Connections

- a. Procedure of installation of suction and discharge pipe connections shall be in accordance to related plumbing and/or water system codes & local regulations.
- b. Suction pipe should be equal in diameter to the suction diameter of the VIMS pump.
- c. Net Positive Suction Head (NPSH) should be calculated against the depth of water source (Tank) to avoid cavitation.

- d. For negative suction or suction lift, install priming pipe with isolation valve in suction pipe for proper priming procedure.
- e. Minimum distance of 10 pipe diameter from any fixtures, valves and fittings to pump suction is recommended to produce laminar flow in suction pipe.
- f. Avoid numerous off-setting in suction pipe to avoid producing of cavitation.
- g. Proper support brackets and/or thrust blocks in suction & discharge pipe must be installed.
- h. Valves, fixtures and fittings must be followed in accordance to plumbing and/or water system codes & local regulation with all necessary mechanical valves to protect the pump and piping system during operation.
- i. If pump is supplied with packing gland seal, it is recommended to install drain pipe to avoid flooding of water inside the pump room.

5. Wiring Connections for Electric Motors

- a. Procedure of installation of wires and cables for electric motor shall be in accordance to related electrical code & local regulations.
- b. Wire or cable sizes must be appropriate to Kilowatt (kw) or Horsepower (hp) rating of electric motor. Kindly refer to electrical code & local regulations.
- c. Procedure of wire or cable termination or connection to electric motor terminal box should be followed in accordance to electric code & local regulations.
- d. Wires or cables should be installed in metal conduit or light tight conduit.
- e. Electrical components related in protecting the electric motor against irregular conditions should be installed in control panels.

SECTION VI. OPERATION PROCEDURE

1. Pre-start-up & Checking

- a. Wear Personal Protective Gear or Equipment prior for start-up and operation.
- b. Prepare your instrument or tools to observe the performance of the pump.
- c. Check water source. Never operate the pump if water has presence of sand or any solid particles.
- d. Check all valves & fittings. Never activate the pump where suction and discharge isolation valve is closed.
- e. "Prime" the suction pipe prior for start-up. Remove trap air by unscrew the air vent plug located in pump head.
- f. Use clearance spacer for checking of correct impeller clearance.
- g. Inspect mechanical seal if it is properly installed.
- h. Inspect pump shaft alignment. It may misalign during shipment, improper handling and installation.
- i. Pump shaft must be rotated freely by hand.
- j. Pump should be clean, free from any dust particles that might affect the smooth performance of pump & motor bearings.

2. Start-Up

- a. Open the isolation valve in suction pipe.
- b. Make sure suction pipe is properly primed upon opening of the gate valve.

- c. Check the rotation by jump start the motor. Rotation should be same to direction of arrow reflected in pump volute.
- d. Start the driver.
- e. Slowly open the isolation valve in discharge pipe.
- f. Do not operate the pump exceeding to its rated working pressure.
- g. Use calibrated tester or current meter instrument to check if actual current of motor is within the normal range.
- h. Observe the pump volute. If high temperature is observe, immediately shut down the pump and inspect the pump and suction pipe.
- i. Observe pump vibration if it is within the normal range.
- j. Mechanical Seal
 - Excessive temperature & vibration could damage the ceramic coating of mechanical seal.
 - ii. Presence of solid particles in water could also damage the mechanical seal.
 - iii. Misalignment of pump and/or motor shaft could also damage the mechanical seal
- f. Adjust all necessary protective electrical components in control panel for motor protection.
- g. Do not operate electric motors if actual voltage fluctuates. Please refer Section VII. #4.a for reference.

3. Pump Stop

- a. Necessary valves & fittings are required to protect the pump from water hammer effects when stopping the operation. Please refer to plumbing and/or water system codes & local regulations for reference.
- b. If pump will not be used for longer period of time or if climate of freezing exists, close the suction and discharge isolation valve and drain the water inside the pump base completely.

SECTION VII. MAINTENANCE PROCEDURE

1. General Maintenance

a. Pump room should be clean & free from any dust particles or any related matters to maintain the smooth operation of pump & motor bearings, mechanical seals and motor exhaust fan.

- b. Floor of pump room or storage should be dry, free from any stagnant water for avoid certain accidents.
- c. No moisture or humidity exists inside the pump room or storage. Necessary ventilation system is required.
- d. Pump room or storage must be secured, free from any thieves and trespassers. Only authorized personnel or maintenance should have an access inside.

e. Shut down all power supply when performing maintenance routine to avoid certain accidents.

- f. Wear Personal Protective Gear or Equipment before performing maintenance check.
- g. It is highly recommended to update regularly the maintenance record for future reference.

2. Bearings

- a. Bearings are not allowed to operate higher than 70°C. Inspect the bearings if temperature is not within the normal ranges.
- b. Lubricate bearings using calcium based grease or SAE20W Oil. Pumps in 2 pole speed (2900rpm in 50hz or 3500rpm in 60hz) should replenish oil or grease every 2500 working hours. 4 pole speed (1450rpm in 50hz or 1750rpm in 60hz) should replenish oil or grease every 5000 working hours. Do not over lubricate because it will cause to overheat.
- c. Bearings should be replaced every 10000 working hours.

3. Mechanical Seal

- a. Presence of high temperature in pump volute, excessive vibration and poor quality of water will damage the ceramic coating of mechanical seal.
- b. Mechanical seals should be replaced immediately if leakage found during standby and running operation.

4. Electrical Conditions

- a. Power voltage fluctuations
 - i. To maintain the expected life period, do not operate the electric motor if
 - 1. Actual voltage fluctuates beyond tolerance bands of +/- 10% from normal power voltage.
 - 2. Actual voltage fluctuates within tolerance bands of +/- 10% from normal power voltage for more than 60 minutes each day.
 - ii. Electric components for protection against abnormal fluctuation of power supply voltage or to maintain the stability of power supply voltage for entire day is required to avoid premature damage of electric motor.

b. Electric motor

- i. Check the termination of wires or cables inside the terminal box. Retighten the bolts and screw if necessary.
- ii. Bearings should be checked thoroughly. Please refer section VII. #2 for reference.
- iii. Measure the motor insulation using insulation tester if it is within the normal range.
- iv. Check body temperature of electric motor. Standard body temperature of electric motor ranges from 40°C to 60°C

SECTION VIII. SPARE PARTS

1. Recommended Spare Parts for VIMS Series Vertical In-line multi-stage stainless steel centrifugal pumps

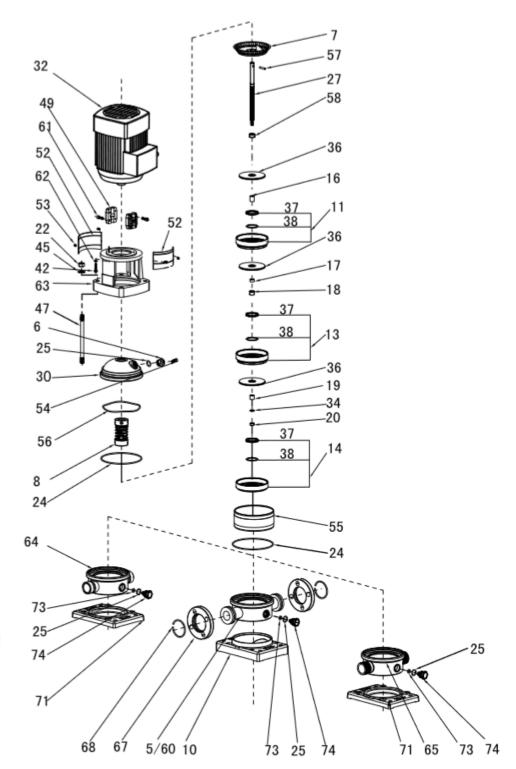
a. Intermittent duty

*Item	Description			
24	O-Ring			
8	Set of Mechanical Seal			
37	Choma Cover			
38	Choma			
16	Impeller sleeve			
17	Short Impeller sleeve			
18	Wear Ring			
19	First Impeller Cover			

^{*} Refer to Section X for reference

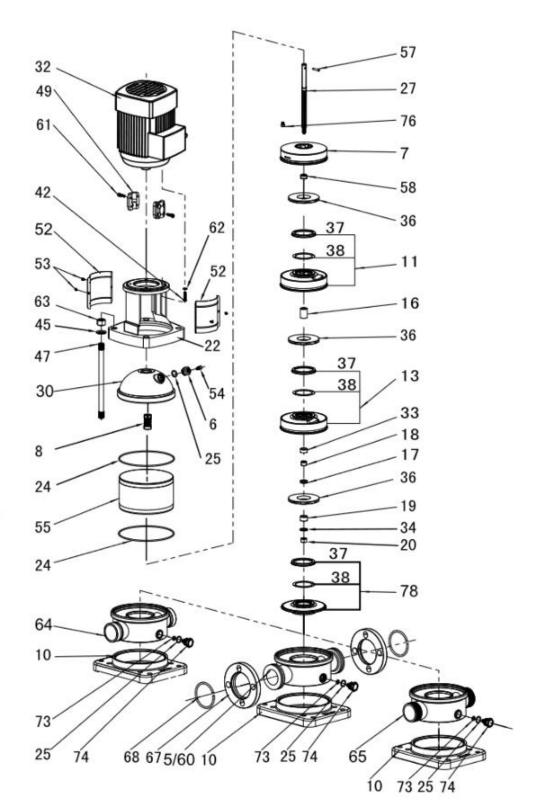
b. Continuous operation

*Item	Description			
24	O-Ring			
8	Set of Mechanical Seal			
7	Top diffuser			
58	Locating Sleeve			
36	Impeller			
11	Set of Diffuser (includes #37, #38)			
16	Impeller sleeve			
13	Set of Support Diffuser (includes #37,			
	#38)			
33	Long Impeller sleeve			
17	Short Impeller sleeve			
18	Wear Ring			
19	First Impeller Cover			
34	Gasket			
14	Set of inducer (includes #37, #38)			

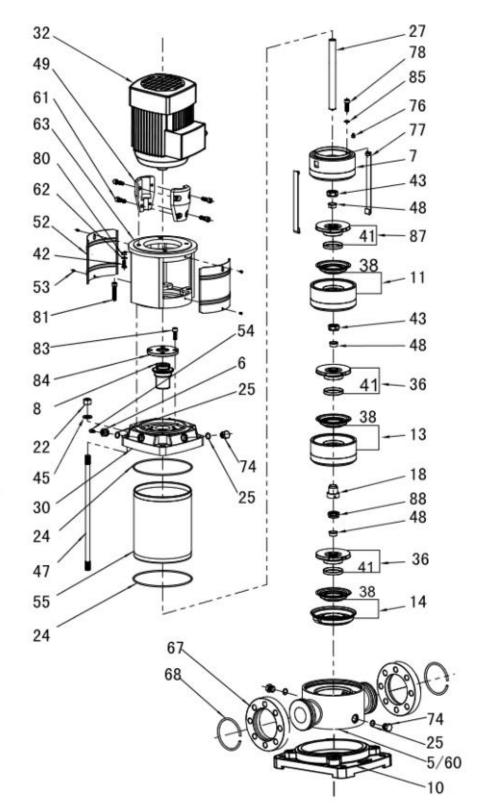

^{*} Refer to Section X for reference

SECTION IX. EXPLODED VIEW

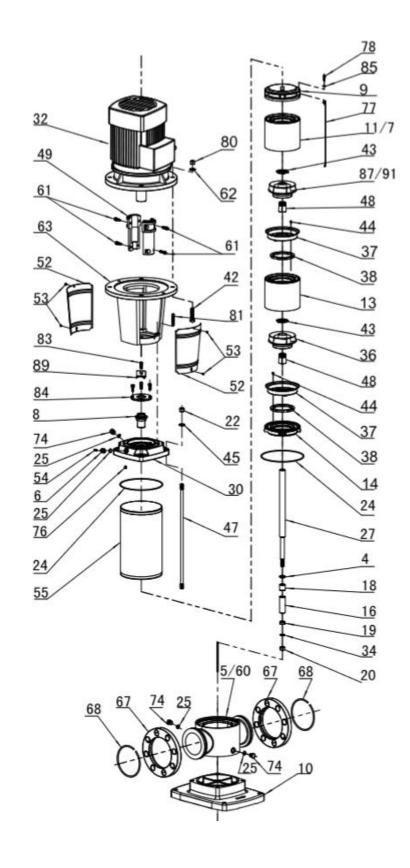
VIMS 1, 2, 3, 4 & 5


- 5 Flange inlet and outlet
- chamber(Stainless steel series)
- 6 Air vent plug
- 7 Top diffuser
- 8 Mechanical seal
- 10 Flange base plate
- 11 Diffuser
- 13 Support diffuser
- 14 Inducer
- 16 Impeller sleeve
- 17 Short impeller sleeve
- 18 Wear ring
- 19 Inlet impeller cover
- 20 Lock nut
- 22 Nut
- 24 O-ring136.5×3.3
- 25 O-ring16×2.65
- 27 Pump shaft
- 30 Seal base
- 32 Motor
- 34 Washer
- 36 Impeller
- 37 Choma cover
- 38 Choma
- 42 Blot
- 45 Washer
- 47 Stay bolt
- 49 Coupling
- 52 Coupling guard
- 53 Screw
- 54 Air vent blot
- 55 Cylinder
- 56 Spring
- 57 Shaft pin 58 Locating sleeve
- 60 Common inlet and outlet chamber
- 61 Socket head cap screw
- 62 Washer
- 63 Bracket
- 64 Cutting ferrule joint inlet and outlet
- chamber
- 65 Pipe thread inlet and outlet chamber
- 67 Flange
- 68 Flange retaining ring
- 71 Screw base plate
- 73 O-ring5.7×1.8
- 74 Drain plug

VIMS 8, 10, 12, 15, 16 & 20


- 5 Flange inlet and outlet chamber
- 6 Air vent plug
- 7 Top diffuser
- 8 Mechanical seal
- 10 Base plate
- 11 Diffuser
- 13 Support diffuser
- 14 Inducer
- 16 Impeller sleeve
- 17 Short impeller sleeve
- 18 Wear ring
- 19 Inlet impeller cover
- 20 Nut M12
- 22 Nut M16
- 24 O-ring169×3.3
- 25 O-ring16×2.65
- 27 Pump shaft
- 30 Seal base (Cast iron series)
- 32 Motor
- 33 Long impeller sleeve
- 34 Gasket
- 36 Impeller
- 37 Choma cover
- 38 Choma
- 42 Blot
- 45 Gasket
- 47 Stay bolt
- 49 Coupling
- 52 Coupling guard
- 53 Screw
- 54 Air vent blot
- 55 Cylinder 57 Shaft pin
- 58 Locating sleeve
- 60 Common inlet and outlet chamber
- 61 Socket head cap screw
- 62 Washer
- 63 Bracket
- 64 Cutting ferrule joint inlet and
- outlet chamber
- 65 Pipe thread inlet and outlet
- chamber
- 67 Flange
- 68 Flange retaining ring
- 73 O-ring
- 74 Drain plug
- 76 Adjustment stake
- 77 Strap
- 78 Nut M8

VIMS 32, 45, 64 & 90


- 5 Inlet and outlet chamber
- (Stainless steel series)
- 6 Air vent plug
- 7 Top diffuser
- 8 Mechanical seal
- 10 Base plate
- 11 Diffuser
- (1.2 stage pump does not exist)
- 13 Support diffuser
- 14 Inducer
- 18 Wear ring
- 22 Nut
- 24 O-ring
- 25 O-ring
- 27 Pump shaft
- 30 Seal base
- 32 Motor
- 36 Impeller
- 38 Choma components
- 41 Impeller sleeve
- 42 Blot
- 43 Impeller nut
- 45 Flat gasket
- 47 Stay bolt
- 48 Taper sleeve
- 49 Coupling
- 52 Coupling guard
- 53 Screw
- 54 Air vent blot
- 55 Cylinder
- 60 Common inlet and outlet chamber
- (Cast iron series)
- 61 Socket head cap screw
- 62 Washer
- 63 Bracket
- 67 Flange
- 68 Retaining ring
- 74 Drain plug
- 76 Adjustment stake
- 77 Strap
- 78 Socket head cap screw
- 80 Nut
- 81 Socket head cap screw
- 83 Socket head cap screw
- 84 Seal cover
- 85 Flat gasket
- 87 Small impeller
- 88 Support nut

VIMS 120, 150 & 200

- 4 Support washer
- 5 Inlet and outlet chamber
- (Stainless steel series)
- 6 Air vent plug
- 7 Top diffuser
- (1.2 stage diffuser)
- 8 Mechanical seal
- 10 Base plate
- 11 Diffuser
- (1.2 stage pump not have)
- 13 Support diffuser
- 14 Inducer
- 16Inlet Impeller sleeve
- 18 Wear ring
- 20 Lock nut
- 22 Nut
- 24 O-ring
- 25 O-ring
- 27 Pump shaft
- 30 Seal base
- 32 Motor
- 34 Small washer
- 36 Impeller
- 37 Choma cover
- 38 Choma
- 42 Blot
- 43 Impeller nut
- 44 Screw
- 45 Flat gasket
- 47 Stay bolt
- 48 Impeller sleeve
- 49 Coupling
- 52 Coupling guard 53 Screw
- 54 Air vent blot
- 55 Cylinder
- 60 Common inlet and outlet
- chamber
- 61 Socket head cap screw
- 62 Washer
- 63 Bracket
- 67 Flange
- 68 Retaining ring
- 74 Drain plug
- 76 Adjustment stake 77 Strap
- 78 Socket head cap screw
- 80 Nut
- 81 Socket head cap screw
- 83 Socket head cap screw
- 84 Seal cover
- 85 Flat gasket
- 87 Small impeller
- 89 Adjustment sheet
- 91 Small impeller B

SECTION X. TROUBLE SHOOTING

Problems		Causes		Recommended Solutions
No discharge flow	1.	Trap air or leak at suction	1.	Remove trap air or repair
		pipe		leak. Prime properly the
				suction pipe
	2.	Impeller clogged	2.	Remove solid particles
	3.	Damaged shaft and impeller	3.	Replace shaft and impeller
Pump loses prime while	1.	Insufficient NPSH	1.	Reduce suction lift
operating	2.	Trap air or leak at suction	2.	Remove trap air or repair
-		pipe		leak
Actual pump capacity and/or	1.	Insufficient NPSH	1.	Reduce suction lift
head insufficient	2.	Actual head greater than	2.	Reduce valves & fittings or
		expected		replace bigger pump
	3.	Trap air or leak at suction	3.	Remove trap air or repair
		pipe		leak. Prime properly the
		• •		suction pipe
	4.	Impeller direction wrong	4.	Interchanged wires & cables
				to reverse the rotation
	5.	Small Impeller diameter	5.	Replace impeller but take
		·		note BHP vs motor HP
	6.	Impeller clogged	6.	Remove solid particles
	7.	Wear ring defective	7.	Replace wear ring
Excessive noise and vibration	1.	Trap air or leak at suction	1.	Remove trap air or repair
		pipe		leak. Prime properly the
		• •		suction pipe
	2.	Impeller direction wrong	2.	Interchanged wires & cables
				to reverse the rotation
	3.	Misalignment	3.	Realign shaft. Use dial
		G		indicator for checking of
				alignment.
	4.	Bearings operating dry	4.	Apply oil or grease or replace
		condition		bearings
Bearings produce excessive heat	1.	Misalignment	1.	Realign shaft. Use dial
- 1		-		indicator for checking of
				alignment.
	2.	Dirty	2.	Clean the bearing
	3.	Operating dry condition	3.	Apply oil or grease
High current readings in electric	1.	Abnormal power voltage	1.	Use electric components to
motor				stabilize the power voltage
	2.	Impeller clogged	2.	Remove solid particles
	3.	Misalignment	3.	Realign shaft. Use dial
		-		indicator for checking of
				alignment.
	4.	Bearings operating dry	4.	Apply oil or grease or replace
		condition		bearings
	5.	Low or no motor Insulation	5.	Rewind or replace the motor
Pump volute produces high	1.	Trap air or leak at suction	1.	Remove trap air or repair
temperature		pipe		leak. Prime properly the
		• •		suction pipe
	2.	Insufficient NPSH	2.	Reduce suction lift